Coming soon - Get a detailed view of why an account is flagged as spam!
view details

This post has been de-listed

It is no longer included in search results and normal feeds (front page, hot posts, subreddit posts, etc). It remains visible only via the author's post history.

2
Is this claim on fields true?
Post Flair (click to view more posts with a particular flair)
Post Body

Proposition: let k be a field and K it’s field of algebraic elements (textbook went through the proof essentially k[x]/k algebraic iff x is algebraic iff extension is finite. Since k[x][y]=k[x,y] and the vector space formula, k[x,y] is finite thus algebraic and the result follows). Then K is the algebraic closure of k. Proof: let P be any polynomial in K[X], a any root of P. We know that K[a]/K and K/k are algebraic. Then K[a]/k is algebraic that is a is algebraic over k and in K. So is this a generalization of the result in the textbook? And is the converse true? If a field k is algebraically closed, is it the algebraic closure of some field? And are all algebraic closures the set of algebraic elements of some field? The last one is true I think. The algebraic closure of a field is equivalent with the set of algebraic elements then? Something must be wrong here because they are not introduced in the same way.

Author
Account Strength
60%
Account Age
2 years
Verified Email
Yes
Verified Flair
No
Total Karma
1,318
Link Karma
8
Comment Karma
1,310
Profile updated: 1 day ago

Subreddit

Post Details

We try to extract some basic information from the post title. This is not always successful or accurate, please use your best judgement and compare these values to the post title and body for confirmation.
Posted
7 months ago