This post has been de-listed
It is no longer included in search results and normal feeds (front page, hot posts, subreddit posts, etc). It remains visible only via the author's post history.
3
Posit: In the future, generative A.I. will be thought of as the unconscious part of a general A.I.'s mind.
Post Flair (click to view more posts with a particular flair)
Post Body
Attribute | Unconscious Mind | Generative AI |
---|---|---|
Information Processing | Processes vast amounts of information rapidly and automatically, often without conscious awareness (From the first studies of the unconscious mind to consumer neuroscience: A systematic literature review, 2023) | Processes large datasets quickly, extracting patterns and generating outputs without explicit programming for each task (Deep Learning, 2015) |
Pattern Recognition | Recognizes complex patterns in sensory input and past experiences, influencing behavior and decision-making (Analysis of Sources about the Unconscious Hypothesis of Freud, 2017) | Excels at identifying patterns in training data, forming the basis for generating new content or making predictions (A Survey on Deep Learning in Medical Image Analysis, 2017) |
Creativity | Contributes to creative insights and problem-solving through unconscious incubation and associative processes (The Study of Cognitive Psychology in Conjunction with Artificial Intelligence, 2023) | Generates novel combinations and ideas by recombining elements from training data in unexpected ways (e.g., GANs in art generation) (Generative Adversarial Networks, 2014) |
Emotional Processing | Processes emotional information rapidly, influencing mood and behavior before conscious awareness (Unconscious Branding: How Neuroscience Can Empower (and Inspire) Marketing, 2012) | Can generate text or images with emotional content based on patterns in training data, but lacks genuine emotions (Language Models are Few-Shot Learners, 2020) |
Memory Consolidation | Plays a crucial role in memory consolidation during sleep, strengthening neural connections (The Role of Sleep in Memory Consolidation, 2001) | Analogous processes in some AI systems involve memory consolidation and performance improvement (In search of dispersed memories: Generative diffusion models are associative memory networks, 2024) |
Implicit Learning | Acquires complex information without conscious awareness, as in procedural learning (Implicit Learning and Tacit Knowledge, 1994) | Learns complex patterns and rules from data without explicit programming, similar to implicit learning in humans (Deep Learning for Natural Language Processing, 2018) |
Bias and Heuristics | Employs cognitive shortcuts and biases that can lead to systematic errors in judgment (Thinking, Fast and Slow, 2011) | Can amplify biases present in training data, leading to skewed outputs or decision-making (Mind vs. Mouth: On Measuring Re-judge Inconsistency of Social Bias in Large Language Models, 2023) |
Associative Networks | Forms complex networks of associations between concepts, influencing thought and behavior (The associative basis of the creative process, 2010) | Creates dense networks of associations between elements in training data, enabling complex pattern completion and generation tasks (Attention Is All You Need, 2017) |
Parallel Processing | Processes multiple streams of information simultaneously (Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1986)) | Utilizes parallel processing architecture (e.g., neural networks) to handle multiple inputs and generate outputs (Next Generation of Neural Networks, 2021) |
Intuition | Generates rapid, automatic judgments based on unconscious processing of past experiences (Blink: The Power of Thinking Without Thinking, 2005) | Produces quick outputs based on learned patterns, which can appear intuitive but lack genuine understanding (BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019) |
Priming Effects | Unconscious exposure to stimuli influences subsequent behavior and cognition (Attention and Implicit Memory: Priming-Induced Benefits and Costs, 2016) | Training on specific datasets can "prime" generative AI to produce biased or contextually influenced outputs (AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias, 2018) |
Symbol Grounding | Grounds abstract symbols in sensorimotor experiences and emotions (The Symbol Grounding Problem, 1990) | Struggles with true symbol grounding, relying instead on statistical correlations in text or other data (Symbol Grounding Through Cumulative Learning, 2006) |
Metaphorical Thinking | Uses embodied metaphors to understand and reason about abstract concepts (Metaphors We Live By, 1980) | Can generate and use metaphors based on learned patterns but lacks deep understanding of their embodied nature (Deep Learning-Based Knowledge Injection for Metaphor Detection, 2023) |
Dream Generation | Produces vivid, often bizarre narratives and imagery during REM sleep (The Interpretation of Dreams, 1900) | Some generative models can produce dream-like, surreal content (Video generation models as world simulators, 2024) |
Cognitive Dissonance | Automatically attempts to reduce inconsistencies between beliefs and behaviors (A Theory of Cognitive Dissonance, 1957) | MoE architectures can handle a wider range of inputs without ballooning model size, suggesting potential for resolving conflicts between different AI components by synthesizing expert opinions into a coherent wholeโ (Optimizing Generative AI Networking, 2024). |
Post Details
We try to extract some basic information from the post title. This is not
always successful or accurate, please use your best judgement and compare
these values to the post title and body for confirmation.
- Posted
- 4 months ago
- Reddit URL
- View post on reddit.com
- External URL
- reddit.com/r/ChatGPT/com...